|
|
イシイ ノブアキ
Ishii Nobuaki 石井 信明 所属 神奈川大学 工学部 経営工学科 神奈川大学大学院 工学研究科 工学専攻(経営工学領域) 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2003/07 |
形態種別 | 著書 |
査読 | 査読あり |
標題 | Crack Detection on Brick Walls by Convolutional Neural Networks Using the Methods of Sub-dataset Generation and Matching |
執筆形態 | 共著 |
掲載誌名 | Deep Learning Theory and Applications |
掲載区分 | 国外 |
出版社・発行元 | Springer |
巻・号・頁 | pp.134-150 |
総ページ数 | 17 |
担当区分 | 最終著者 |
国際共著 | 国際共著 |
著者・共著者 | Talukder, M. H., Ota, S., Takanokura, M., and Ishii, N. |
概要 | In this study, sub-dataset generation and matching methods are proposed to improve the performance of crack detection in brick walls using CNN. CNN training is conducted with each sub-dataset generated by the proposed sub-dataset generation method, while crack detection is performed using a properly trained CNN that is selected using the proposed matching method. For numerical experiments, training datasets are first prepared by manual image cropping and rotation, after which the performance of crack detection is evaluated by cross-validation. Numerical experiments show that the proposed method improves crack detection in brick walls. This study will help to ensure the safety of structures as well as the safety of human life. |
DOI | https://doi.org/10.1007/978-3-031-37320-6 |
ISBN | 978-3-031-37319-0 |
ISSN | 978-3-031-37319-0 |