|
|
ボサール アントワーヌ
Antoine Bossard ボサール アントワーヌ 所属 神奈川大学 情報学部 計算機科学科 神奈川大学大学院 理学研究科 理学専攻(情報科学領域) 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2022/07 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Set-to-Set Disjoint Path Routing in Bijective Connection Graphs |
執筆形態 | 共著 |
掲載誌名 | IEEE Access |
掲載区分 | 国外 |
巻・号・頁 | 10,pp.72731-72742 |
著者・共著者 | K. Kaneko, A. Bossard, F. C. Harris, Jr. |
概要 | [Full paper] [WoS SCIE, 2021: WoS IF=3.476, WoS Q2]
The bijective connection graph encompasses a family of cube-based topologies, and n-dimensional bijective connection graphs include the hypercube and almost all of its variants with the order 2^n and the degree n. The set-to-set disjoint paths problem is as follows: for a set of source nodes S={s1,s2,...,sp} and destination nodes D={d1,d2,...,dp} in a k-connected graph with p<=k, find p paths Pi: si~>d{ji} (1<=i<=p) such that {j1,j2,...,jp}={1,2,...,p} and the paths Pi are node-disjoint. This is an important issue in parallel and distributed computing. We propose an algorithm that constructs p (<=n) disjoint paths between any pair of node sets in n-dimensional bijective connection graphs in polynomial-order time of n: the time complexity is O(n^3p^4) and the maximum path length n+p-1. According to a computer experiment in a locally twisted cube, the average time complexity is O(n^2),and the average maximum path is 0.6333n-0.266. |
DOI | 10.1109/ACCESS.2022.3188783 |