ボサール アントワーヌ   Antoine Bossard
  ボサール アントワーヌ
   所属   神奈川大学  情報学部 計算機科学科
    神奈川大学大学院  理学研究科 理学専攻(情報科学領域)
   職種   教授
言語種別 英語
発行・発表の年月 2023/01
形態種別 学術雑誌
査読 査読あり
標題 On the crossing number of a torus network
執筆形態 共著
掲載誌名 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
掲載区分国内
出版社・発行元 IEICE
巻・号・頁 E106-A(1),pp.35-44
著者・共著者 A. Bossard, K. Kaneko and F. C. Harris, Jr.
概要 [Full paper] [WoS SCIE, 2021: WoS IF=0.423, WoS Q4]

Reducing the number of link crossings in a network drawn on the plane such as a wiring board is a well-known problem, and especially the calculation of the minimum number of such crossings: this is the crossing number problem and it is NP-hard. We address it for particular classes of graphs: tori. First, we discuss an upper bound on cr(T(2, k)) the number of crossings in a 2-dimensional k-ary torus T(2, k) where k>=2. Second, we derive an upper bound on the crossing number of a 3-dimensional k-ary torus: cr(T(3, k)) <= cr(T(3, k)) \leq 2k^4 - k^3 - 4k^2 - 2\lceil k/2\rceil\lfloor k/2\rfloor(k - (k mod 2)) is obtained. Third, an upper bound on the crossing number of an n-dimensional k-ary torus is derived from the previously established results, with the order of this upper bound additionally established for more clarity: cr(T(n, k)) is O(n^2 k^{2n-2}) when n>=k and O(nk^{2n-1}) otherwise.