|
|
ボサール アントワーヌ
Antoine Bossard ボサール アントワーヌ 所属 神奈川大学 情報学部 計算機科学科 神奈川大学大学院 理学研究科 理学専攻(情報科学領域) 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2023/01 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | On the crossing number of a torus network |
執筆形態 | 共著 |
掲載誌名 | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
掲載区分 | 国内 |
出版社・発行元 | IEICE |
巻・号・頁 | E106-A(1),pp.35-44 |
著者・共著者 | A. Bossard, K. Kaneko and F. C. Harris, Jr. |
概要 | [Full paper] [WoS SCIE, 2021: WoS IF=0.423, WoS Q4]
Reducing the number of link crossings in a network drawn on the plane such as a wiring board is a well-known problem, and especially the calculation of the minimum number of such crossings: this is the crossing number problem and it is NP-hard. We address it for particular classes of graphs: tori. First, we discuss an upper bound on cr(T(2, k)) the number of crossings in a 2-dimensional k-ary torus T(2, k) where k>=2. Second, we derive an upper bound on the crossing number of a 3-dimensional k-ary torus: cr(T(3, k)) <= cr(T(3, k)) \leq 2k^4 - k^3 - 4k^2 - 2\lceil k/2\rceil\lfloor k/2\rfloor(k - (k mod 2)) is obtained. Third, an upper bound on the crossing number of an n-dimensional k-ary torus is derived from the previously established results, with the order of this upper bound additionally established for more clarity: cr(T(n, k)) is O(n^2 k^{2n-2}) when n>=k and O(nk^{2n-1}) otherwise. |