|
|
フナハシ ヒデハル
Funahashi Hideharu 舟橋 秀治 所属 神奈川大学 経済学部 経済学科/現代ビジネス学科 神奈川大学大学院 経済学研究科 経済学専攻(公共政策コース) 職種 准教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2021/04 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Funahashi, H. (2021), "Artficial Neural Network for Option Pricing with and without Asymptotic Correction," Quantitative Finance, 21(4), 575 - 592 |
執筆形態 | 単著 |
掲載区分 | 国外 |
概要 | This paper proposes a mixed approach of asymptotic expansion (AE) and artificial neural network (ANN) methods for option pricing in order to improve computational speed, stability, and approximation accuracy. By combining the strong points and making up for the weak points of the two methods, our new approach offers the following improvements: (1) much less training data, layers, and nodes are required: (2) the offline training becomes more robust and the online predictions produce more stable and accurate results: and (3) it significantly speeds up the offline calculations. |