|
|
ノト マサト
Noto Masato 能登 正人 所属 神奈川大学 情報学部 システム数理学科 神奈川大学大学院 工学研究科 工学専攻(電気電子情報工学領域) 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2024/08 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Improved Kepler Optimization Algorithm Based on Mixed Strategy |
執筆形態 | 共著 |
掲載誌名 | Lecture Notes in Computer Science |
掲載区分 | 国外 |
出版社・発行元 | Springer Nature |
巻・号・頁 | 14788,pp.157-170 |
著者・共著者 | J. Li, M. Noto, Y. Zhang |
概要 | The original Kepler optimization algorithm (KOA) is characterized by slow convergence speed, weak global search capability, low solution accuracy, and susceptibility to local optima. In this paper, we propose MSKOA, a hybrid strategy designed to improve the features of the original KOA. Specifically, we adopt a Sobol sequence to initialize the population, aiming to achieve a more uniform distribution of initial solutions across the solution space, and integrate a sine-cosine algorithm with mutation opposition-based learning to enhance both the global search and local exploitation capabilities. The results of experimental comparative analysis on ten benchmark test functions demonstrate that the improved Kepler optimization algorithm based on a mixed strategy exhibits notable improvements in both convergence speed and solution accuracy. |