|
|
カナザワ ユウイチロウ
Kanazawa Yuichiro 金澤 雄一郎 所属 神奈川大学 経済学部 経済学科/現代ビジネス学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 1992/03 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | AN OPTIMAL VARIABLE CELL HISTOGRAM BASED ON THE SAMPLE SPACINGS |
執筆形態 | 単著 |
掲載誌名 | ANNALS OF STATISTICS |
出版社・発行元 | INST MATHEMATICAL STATISTICS |
巻・号・頁 | 20(1),pp.291-304 |
著者・共著者 | Y KANAZAWA |
概要 | Suppose we wish to construct a variable k-cell histogram based on an independent identically distributed sample of size n-1 from an unknown density f on the interval of finite length. A variable cell histogram requires cutpoints and heights of all of its cells to be specified. We propose the following procedure: (i) choose from the order statistics corresponding to the sample a set of k + 1 cutpoints that maximize a criterion, a function of the sample spacings; (ii) compute heights of the k cells according to a formula. The resulting histogram estimates a k-cell theoretical histogram that stays constant within a cell and minimizes the Hellinger distance to the density f. The histogram tends to estimate low-density regions accurately and is easy to compute. We find the number of cells of order n^(1/3) minimizes the mean Hellinger distance between the density f and a class of histograms whose cutpoints are chosen from the order statistics. |
DOI | DOI: 10.1214/aos/1176348523 |
ISSN | 00905364 |