|
|
カナザワ ユウイチロウ
Kanazawa Yuichiro 金澤 雄一郎 所属 神奈川大学 経済学部 経済学科/現代ビジネス学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2024/06 |
形態種別 | その他論文 |
標題 | Parallelizing MCMC with Machine Learning Classifier and Its Criterion Based on Kullback-Leibler Divergence |
執筆形態 | 共著 |
掲載誌名 | arXiv>stat>arXiv:2406.11246 |
掲載区分 | 国外 |
担当区分 | 責任著者 |
概要 | In the era of Big Data, analyzing high-dimensional and large datasets presents significant computational challenges. Although Bayesian statistics is well-suited for these complex data structures, the Markov Chain Monte Carlo (MCMC) method, which is essential for Bayesian estimation, suffers from computation cost because of its sequential nature. For faster and more effective computation, this paper introduces an algorithm to enhance a parallelizing MCMC method to handle this computation problem. We highlight the critical role of the overlapped area of posterior distributions calculated from partitioned data. We propose a method based on a machine learning classifier to identify and extract MCMC effectively draws from this area to approximate the actual posterior distribution. |
DOI | https://doi.org/10.48550/arXiv.2406.11246 |