ヨシダ ミノル   Yoshida Minoru
  吉田 稔
   所属   神奈川大学  情報学部 システム数理学科
    神奈川大学大学院  工学研究科 工学専攻(情報システム創成領域)
   職種   教授
言語種別 英語
発行・発表の年月 2021/08
形態種別 学術雑誌
査読 査読あり
標題 Non-local Markovian symmetric forms on infinite dimensional spaces (1: closability and the quasi regularlity)
執筆形態 共著
掲載誌名 Communications in Mathematical Phyisics
掲載区分国外
出版社・発行元 Springer-Verlag
巻・号・頁 388,pp.659-706
著者・共著者 Sergio Albeverio et. al.
概要 General theorems on the closability and quasi-regularity of non-local Markovian symmetric forms on probability spaces $(S, {\cal B}(S), \mu)$, with $S$ Fr{\'e}chet spaces such that $S \subset {\mathbb R}^{\mathbb N}$, ${\cal B}(S)$ is the Borel $\sigma$-field of $S$, and $\mu$ is a Borel probability measure on $S$, are introduced.Firstly, a family of non-local Markovian symmetric forms ${\cal E}_{(\alpha)}$, $0 < \alpha < 2$, acting in each given $L^2(S; \mu)$ is defined, the index $\alpha$ characterizing the order of the non-locality.Then, it is shown that all the forms ${\cal E}_{(\alpha)}$ defined on $\bigcup_{n \in {\mathbb N}}C^{\infty}_0({\mathbb R}^n)$ are closable in $L^2(S;\mu)$. Moreover, sufficient conditions under which the closure of the closable forms, that are Dirichlet forms, become strictly quasi-regular, are given. Finally, an existence theorem for Hunt processes properly associated to the Dirichlet forms is given.