![]()
|
|
|
ヨシダ ミノル
Yoshida Minoru 吉田 稔 所属 神奈川大学 情報学部 システム数理学科 神奈川大学大学院 工学研究科 工学専攻(情報システム創成領域) 職種 教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2021/08 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 標題 | Non-local Markovian symmetric forms on infinite dimensional spaces (1: closability and the quasi regularlity) |
| 執筆形態 | 共著 |
| 掲載誌名 | Communications in Mathematical Phyisics |
| 掲載区分 | 国外 |
| 出版社・発行元 | Springer-Verlag |
| 巻・号・頁 | 388,pp.659-706 |
| 著者・共著者 | Sergio Albeverio et. al. |
| 概要 | General theorems on the closability and quasi-regularity of non-local Markovian symmetric forms on probability spaces $(S, {\cal B}(S), \mu)$, with $S$ Fr{\'e}chet spaces such that $S \subset {\mathbb R}^{\mathbb N}$, ${\cal B}(S)$ is the Borel $\sigma$-field of $S$, and $\mu$ is a Borel probability measure on $S$, are introduced.Firstly, a family of non-local Markovian symmetric forms ${\cal E}_{(\alpha)}$, $0 < \alpha < 2$, acting in each given $L^2(S; \mu)$ is defined, the index $\alpha$ characterizing the order of the non-locality.Then, it is shown that all the forms ${\cal E}_{(\alpha)}$ defined on $\bigcup_{n \in {\mathbb N}}C^{\infty}_0({\mathbb R}^n)$ are closable in $L^2(S;\mu)$. Moreover, sufficient conditions under which the closure of the closable forms, that are Dirichlet forms, become strictly quasi-regular, are given. Finally, an existence theorem for Hunt processes properly associated to the Dirichlet forms is given. |