|
|
チョウ ゼンシュン
Zhang Shanjun 張 善俊 所属 神奈川大学 情報学部 計算機科学科 神奈川大学大学院 理学研究科 理学専攻(情報科学領域) 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2019/01 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | An improved color image defogging algorithm using dark channel model and enhancing saturation |
執筆形態 | 単著 |
掲載誌名 | International Journal for Light and Electron Optics, Optik |
掲載区分 | 国外 |
出版社・発行元 | ELSEVIER |
巻・号・頁 | 180(2019),pp.997-1000 |
担当範囲 | research ideas and implementation |
概要 | Fog is an atmospheric phenomenon that significantly degrades the visibility of outdoor scenes. It
is difficult to lock in and track off criminals clarity in the high-definition surveillance hazy image and driverless. In our research, we develop dark channel model, re-refined transmission map by transferring coefficient. Compared with other defogging methods based on single color image prior, our method is a effectiveness of the proposed defogging algorithm, enhanced the saturation of defogging image and a higher quality depth map can be obtained of fog removal. In this way, a clear hazy image is obtained while maintaining the fog removing quality. Moreover, a good quality defogging image can be validated of fog removal by PSNR and MSE. |
DOI | https://doi.org/10.1016/j.ijleo.2018.12.020 |