モリタ ヒカル   Morita Hikaru
  森田 光
   所属   神奈川大学  情報学部 システム数理学科
    神奈川大学大学院  工学研究科 工学専攻(情報システム創成領域)
   職種   教授
言語種別 日本語
発行・発表の年月 2021/03
形態種別 その他
標題 主観的評価を伴う因果推論への提案
執筆形態 共著
掲載誌名 電子情報通信学会 情報セキュリティ研究専門委員会 ISEC2020-76
掲載区分国内
著者・共著者 池田大地、森田 光
概要 情報セキュリティの本人確認や個人照合などでは,機械学習の技法である深層学習などがしばしば用いられる.また,一般的には,学習用のデータを増すアプローチをとり推論精度を上げることが行われている.しかし,もともと豊富なデータ量が得られないケースでは精度を上げることができなかった.著者らは,推論精度を向上するために,既存データを増やさずに,主観評価データを付け加えることで学習をうながす方法を提案する.具体的には,既存の特徴量などからなる確率変数に,主観評価データを新たな確率変数として付け加える.ここでは,確率変数の相互関係は,NBC(単純ベイズ分類器)に主観評価の確率変数を付加するアプローチをとった.また,確率的グラフィカルモデル(以下,PGM)と同様のアプローチをとることにより,いわばNBCの拡張としての定式化が行われる.本方式の妥当性については,フィッシングのURLアドレスの判定問題と,オレオレ詐欺に用いられた会話例の判定問題として評価する.