ヨシダ ミノル   Yoshida Minoru
  吉田 稔
   所属   神奈川大学  情報学部 システム数理学科
    神奈川大学大学院  工学研究科 工学専攻(情報システム創成領域)
   職種   教授
発表年月日 2019/11/18
発表テーマ Applications of non-local Dirichlet forms defined on infinite dimensional spaces.
学会区分 国際学会
発表形式 口頭(招待・特別)
単独共同区分 単独
招待講演 招待講演
概要 The general framework on the non-local Markovian symmetric forms on
weighted $l^p$ $(p \in [1, \infty])$ spaces constructed by [A,Kagawa,Yahagi,Y 2020],
by restricting the situation where $p =2$, is applied to such measure spaces as the space cut-off $P(\phi)_2$ Euclidean quantum field,
the $2$-dimensional Euclidean quantum fields with exponential and trigonometric potentials, and the
field describing a system of an infinite number of classical particles.
For each measure space, the Markov process corresponding to
the
non-local type
stochastic quantization is constructed.