(最終更新日:2020-04-14 23:51:08)
  シュウ ベンユエン   Hsu Penyuan
  許 本源
   所属   神奈川大学  工学部 数学教室
   職種   助教
■ 学会発表
1. 2019/09 Continuous alignment of vorticity direction prevents the blow-up of the Navier-Stokes flow under the no-slip boundary condition(RIMS Gasshuku-style Seminar Workshop on physical and mathematical approaches to geophysical fluid problems)
2. 2018/05 Swirling flow of the Navier-Stokes equations near a saddle point and no-slip flat boundary(Conference on Mathematical Fluid Dynamics)
3. 2017/09 Initial value conditions for the Navier-Stokes equations in the weighted Serrin class(NCTS PDE Workshop on Fluid Dynamics and Related Problems)
4. 2016/08 Swirling flow of the Navier-Stokes equations near a saddle point and no-slip flat boundary(International conference on PDE TOWARDS REGULARITY)
5. 2016/07 ナビエ・ストークス方程式に対する数値シミュレーション及び竜巻の構造(渦の特徴付け研究会)
全件表示(19件)
■ 著書・論文歴
1. 論文  Continuous alignment of vorticity direction prevents the blow-up of the Navier-Stokes flow under the no-slip boundary condition (共著) 2019 Link
2. 論文  On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces (共著) 2019 Link
3. 論文  The Navier-Stokes equations with initial values in Besov spaces of type B- 1+3/q q,∞ (共著) 2017 Link
4. 論文  A local analysis of the axisymmetric Navier-Stokes flow near a saddle point and no-slip flat boundary (共著) 2016 Link
5. 論文  Initial values for the Navier-Stokes equations in spaces with weights in time (共著) 2016 Link
全件表示(7件)
■ 講師・講演
1. 2017/09 A Liouville theorem for the planar Navier-Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion(中央大学 (台湾))
2. 2015/11 A local analysis of the swirling flow to the axi-symmetric Navier-Stokes equations near a saddle point and no-slip flat boundary(東京大学)
3. 2014/05 A Liouville theorem for the planer Navier-Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion(TU Darmstadt)
4. 2013/05 Liouville problems for the planer Navier-Stokes equations(TU Darmstadt)
5. 2013/01 Analysis of effects by advertisement in different kind of media(東京大学)
全件表示(7件)
■ 受賞学術賞
1. 2014/04 岩波風樹会 研究奨励金
2. 2014/04 神林奨学財団 研究奨励金
3. 2012/04 財団法人日本台湾交流協会 奨学金留学生(国内採用)
4. 2011/04 神林奨学財団 留学生奨学会 奨学金
5. 2009/04 東京大学フェローシップ
■ 現在の専門分野
非線形偏微分方程式 (キーワード:非線形偏微分方程式、数学流体)